Discrete Time Ruin Probability with Parisian Delay

نویسنده

  • IRMINA CZARNA
چکیده

In this paper we evaluate the probability of the discrete time Parisian ruin that occurs when surplus process stays below or at zero at least for some fixed duration of time d > 0. We identify expressions for the ruin probabilities within finite and infinite-time horizon. We also find their light and heavy-tailed asymptotics when initial reserves approach infinity. Finally, we calculate these probabilities for a few explicit examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruin Probability with Parisian Delay for a Spectrally Negative Lévy Risk Process

In this paper we analyze the so-called Parisian ruin probability, which arises when the surplus process stays below 0 longer than a fixed amount of time ζ > 0. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we derive an expression for the ruin probability in terms of quantities that can be calculated explicitly in many models. We find its Cra...

متن کامل

Parisian Ruin Probability for Spectrally Negative Lévy Processes

In this note we give, for a spectrally negative Lévy process, a compact formula for the Parisian ruin probability, which is defined by the probability that the process exhibits an excursion below zero which length exceeds a certain fixed period r. The formula involves only the scale function of the spectrally negative Lévy process and the distribution of the process at time r.

متن کامل

Gerber-Shiu distribution at Parisian ruin for Lévy insurance risk processes

Inspired by works of Landriault et al. [11, 12], we study the Gerber–Shiu distribution at Parisian ruin with exponential implementation delays for a spectrally negative Lévy insurance risk process. To be more specific, we study the so-called Gerber–Shiu distribution for a ruin model where at each time the surplus process goes negative, an independent exponential clock is started. If the clock r...

متن کامل

MODELLING AND ANALYSIS OF A DISCRETE-TIME PRIORITY QUEUING COMPUTER NETWORK WITH PRIORITY JUMPS USING PROBABILITY GENERATING FUNCTIONS

Priority queues have a great importance in the study of computer communication networks in which different types of traffic require different quality of service standards. The discrete-time non-preemptive priority queuing model with priority jumps is proposed in this paper. On the basis of probability generating functions mean system contents and mean queuing delay characteristics are obtained....

متن کامل

Asymptotics for the infinite time ruin probability of a dependent risk model with a constant interest rate and dominatedly varying-tailed claim sizes

 This paper mainly considers a nonstandard risk model with a constant interest rate‎, ‎where both the claim sizes and the inter-arrival times follow some certain dependence structures‎. ‎When the claim sizes are dominatedly varying-tailed‎, ‎asymptotics for the infinite time ruin probability of the above dependent risk model have been given‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017